Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation
نویسندگان
چکیده
Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereophotogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary ‘‘on-the-job’’ calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera-to-object and baseline distance reduces errors in occluded areas and that realistic ground truths help to quantify those errors. 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
منابع مشابه
A field investigation of application of digital terrestrial photogrammetry to characterize geometric properties of discontinuities in open-pit slopes
In order to analyze the slope stability in open-pit mines, the structural parameters of rock mass such as persistence and spatial orientation of discontinuities are characterized through field surveys, which involve spending high costs and times as well as posing high risks of rock toppling and rock fall. In the present work, a new application of terrestrial digital photogrammetry is introduced...
متن کاملEvaluation of Close-Range Photogrammetric Technique for Deformation Monitoring of Large-Scale Structures: A review
Close-range photogrammetry has been used in many applications in recent decades in various fields such as industry, cultural heritage, medicine and civil engineering. As an important tool for displacement measurement and deformation monitoring, close-range photogrammetry has generally been employed in industrial plants, quality control and accidents. Although close-range photogrammetric applica...
متن کاملEvaluation of Cartosat-1 Multi-Scale Digital Surface Modelling Over France
On 5 May 2005, the Indian Space Research Organization launched Cartosat-1, the eleventh satellite of its constellation, dedicated to the stereo viewing of the Earth's surface for terrain modeling and large-scale mapping, from the Satish Dhawan Space Centre (India). In early 2006, the Indian Space Research Organization started the Cartosat-1 Scientific Assessment Programme, jointly established w...
متن کاملSedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry
In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1m) observation. We develop emerging, high-resolution groundand unmanned aerial vehicle-based ‘Structure-f...
متن کاملAn Algorithm for Computing Extrinsic Camera Parameters for Accurate Stereo Photogrammetry of Clouds
In this paper, we present a technique for accurate stereo photogrammetry of clouds for observation and measurement of the formation of summer thunderstorms over elevated terrain. Two digital cameras are set on a ground baseline so that the straight-line distance between the two cameras and the highest terrain is about 16 km and the spacing between the center of cameras is about 0.6km. Stereo pa...
متن کامل